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Abstract—Natural circulation in a horizontal pipe with one end connected to the hot main pipe and
one end closed can create a substantial temperature gradient axially and circumferentially. The tempera-
ture distribution around such a pipe can be predicted by solving the conservation equations inside the
pipe and energy equation around the pipe. The line SOR (successive over relaxation) method has been
employed to solve these equations. This numerical solution has been confirmed by comparing it to an
exact solution for the simplified case where the heat transfer coefficient around the pipe is uniform.

Pipe temperature variations predicted by this analysis have been characterized by five dimensionless
parameters. Of these five, the parameter A, which is related to the Biot number, is the controlling
parameter. The maximum temperature gradient around the tube increases sharply as 4 increases.
Applications of this solution are discussed and a set of recommendations to reduce temperature gradient

are presented.

NOMENCLATURE
A, matrix;
a, tube radius [m];
a;, bi, c;, d;, elements of vector;
. ha
Bi, Biot number, K.’
C, axial pressure gradient,
a2
Wz [dimensionless];
C,, constant axial temperature drop,
AT*
Re,Pra A7 K]
C3;, dimensionless wall parameter, ﬁ—f? ;
C4, dimensionless heat loss parameter,
a® 45
Kyt Cy’
C,,  constant pressure specific heat [J/kgK];
D, inside tuber diameter [m];
£, dummy variable;
h, heat-transfer coefficient [W/m?K];
K;,  fluid thermal conductivity [W/mK];
K., tube wall thermal conductivity [W/mK];
M, number of divisions in R-direction;
N, number of divisions in f-direction;
Nu, local circumferential Nusselt number,
(ha)/K;
P, pressure [N/m?];
Pe, Peclet number Re, Pr;
Pr, Prandtl number (uC,/K);
q’,  rate of heat transfer per unit area [W/m?];
qo, amplitude of rate of heat loss through

outside of the tube wall [W/m?];

R,6,Z, dimensional cylindrical coordinates;

r,6,z, dimensionless cylindrical coordinates;
Wa
Re,, Reynolds number based on radius, Ll ;
I
T, local fluid or wall temperature [K];
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T,
T,
T,
T,
AT,

ATH,

F;E=ET

3

top wall temperature [K];

bottom wall temperature [K];

bulk average temperature [K];

reference temperature [K];

circumferential temperature drop between
the top and bottom of the wall T, — T, [K];
axial temperature drop between hot and cold
ends, or constant axial temperature drop in
fully developed region [K];

tube wall thickness [m];

dimensional axial velocity [m/s];
dimensionless axial velocity, W/W;

average axial velocity in upper or bottom
portion of the tube [m/s];

dimensional circumferential direction;
dimensionless temperature (T— T,)/AT;
defined in equation (13).

Greek symbols

g, angle measured from top of the tube, degree;
6y,  boundary for regions 1 and 2 shown in
Fig. 5;
A, dimensionless parameter,
ha a'|'? at?
—_ or | Bi—- ;
] o]
n viscosity [Ns/m?];
2, density [kg/m?];
®, dimensionless temperature,
T-T, T-T,
or ;
Cl Tl - TZ
v, two-dimensional Laplacian operator
o2 10 18
PR R T
Subscripts
b, bulk mean value;
1, property for fluid;
i,j,  space subscripts of grid points in R and 6
direction;
w, property for wall.
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INTRODUCTION

NATURAL circulation in a horizontal pipe occurs when
one end is closed and the other end is connected with
another pipe where the hot fluid is passing. The hot
fluid from the flowing pipe moves into the upper
portion of the closed pipe toward the closed cold end
and cooler fluid flows out the lower portion of the
closed pipe toward the flowing pipe. In a typical
application, the closed end of the pipe is usually the
location of a valve. The frequent opening and closing
of the valve can create a significant thermal stress in
the valve as well as in the pipe owing to the tempera-
ture difference between the main pipe and the closed
end.

There will also be top-to-bottom temperature differ-
ences found in these horizontal, dead-leg pipes. This
temperature gradient is also produced by the natural
circulation flow. The detailed temperature profiles
around such a pipe and the temperature differences
between the main pipe and the cold ends are required
for pipe design, thermal stress analysis and valve failure
analysis.

It was observed in a plastic model test [1] that the
upper fluid which is warmer tends to move toward
the dead leg and the colder, bottom portion of the
fluid moves to the main pipe. A pressure drop between
the two ends is created by a temperature-induced
density gradient along the pipe. There is, of course, an
entrance length which allows the natural circulation
flow to develop and a region close to the end of the
dead leg where the temperature variations around the
tube wall are nearly uniform. The flow pattern observed
in these regions is three dimensional and the solution
is complicated. The successful handling of such a flow
is difficult by considering the natural convection in the
vertical direction so that flow becomes three dimen-
sional. The present analysis will be concerned with the
region where the greatest temperature gradients are
observed and the entrance effect will be ignored.

The velocity component in the vertical direction
observed is much smaller than the velocity com-
ponent in the horizontal direction generated by the
natural circulation. The free convection effect in the

N+l
FiG. 1. Coordinate system and numerical grid for horizontal circular pipe.

Hot end

vertical direction will be ignored and the problem is
simplified as forced convection in a horizontal pipe.

Since the top portion and the bottom portion of the
fluid flow in opposite directions, one can imagine that
there is a solid wall across the horizontal centerline,
and the flow in the pipe functions as a heat exchanger.
It is noted from both visual observation and velocity
measurements that the fluid flows in these two portions
are laminar. One can thus simulate the flow pattern as
laminar flow in a semi-circular tube.

Thermally and hydrodynamically fully developed
flow in semi-circular tubes has been solved by Eckert
et al. [2] and Sparrow and Haji-Sheikh [3]. Extensive
investigation of laminar flow heat transfer in ducts of
various shapes has been considered by Shah and
London [4] for different kinds of thermal boundary
conditions. Recently, Hong and Bergles [5] considered
the entrance effect of semi-circular tubes with uniform
heat flux. The three-dimensional thermal entrance
region problem in the circular tubes with secondary
flow effect has been solved numerically by Hong et al.
[6,7], for uniform wall heat flux. However, none of
these existing solutions can be applied directly to the
present problem. For the particular problem at hand,
the results of two-dimensional analysis lead one to a
further simplification of the problem. The final solution
is obtained by solving an equation identical to that
obtained for the one-dimensional conduction fin
problem.

FORMULATION OF THE PROBLEM

The system of coordinates of steady laminar flow in
the fully developed region of a horizontal tube is shown
in Fig. 1. To facilitate analysis, the following assump-
tions are made:

1. Physical properties of the fluid and tube wall are
considered to be constant so that neither free con-
vection in the vertical direction nor temperature-
dependent viscosity effects are taken into account.

2. The axial pressure gradient is constant.

3. The axial temperature gradients in the top and
bottom portions of fluid flow are the same in
magnitude and are constant.

i i i i A ez
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Cool end
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4, The axial and radial conduction in the tube wall
can be neglected.
5. The axial conduction in the fluid can be neglected.
6. The fiuid flow in the upper and lower portions of
the pipe is identical except in direction and is two
dimensional. The free convection in the vertical
direction is ignored.
When cylindrical coordinates (R, #, Z) as shown in
Fig. 1 are introduced and the assumptions stated above
are applied, the governing differential equations are:

Momentum equation
62W+ 1 eWw
dR* R @R

Energy equation

L a*w 1P

TR T noz (0

pC,\. 8T *T 10T 1+ &T
T W sty ey (2
K;) ¢Z 0R* RG&R R? 80
Conduction equation at wall
K, 3T aT

@ a7~ MR

Since the thermal and hydrodynamic conditions are
symmetric with respect to the vertical center line, one
needs to consider only half of the circular geometry.
To normalize the governing partial differential equa-
tions the following dimensionless variables, constants,
and parameters were used;

r= R/a

Dimensionless velocity w= W/W

, +4"(0). 3

Dimensionless radius

) Wa
Reynolds number based on radius Re, = 87
C
Prandtl number Pr ='—7
Ky

Peclet number Pe = Re, Pr

Dimensionless pressure drop constant

& oP
uweéz
Dimensionless temperature
T-1, T-T,
o= =
Pe— AT* !

AZ

Axial temperature gradient parameter

*

AZ
where 7; is the reference temperature and is chosen to
be the overall average fluid bulk temperature at one
cross section. The momentum and energy equation for
the fluid and conduction equation for the pipe wall
can thus be simplified to the following dimensionless
forms.

C1=Pea

Viw=C @
Vip=—w 5
iat) .0
2 Cs glrﬂ‘FCu}(G) (6)

where
Ksa
C3 = RLWH
2 (7
C, = a“qo
* T KLC
are constants and
& 1e 1 &
Vie —+-—+—

e ror 2 o0?
is the Laplacian operator. g(f) is assumed to be a given
function for heat loss through the outside of the tube
wall and can be estimated to be
q{0) = 1 +%cos 6. {8)
The boundary conditions for equations (4)-(6) are as
follows:

atwall,r =1, w=0
at vertical centerline, @ =0 or n

Lo ©)

at horizontal centerline, 8 = /2, W = 0.

It is noted that equations (4) and (5) are Poisson’s
equation and can be solved by the Successive Over-
Relaxation (SOR) method. The details of the SOR
method are given in [7] and [8].

The heat loss term indicated in equation (7) is
assumed and can be estimated as:

Th~T

1/4
q8=h(To-Ta)=0-25( ) (h-T) (10)
where Tp and T, are the wall and atmospheric tem-
perature, respectively. It is clear that Cq4 = 0 corre-
sponds to a perfect insulated wall. A computer code
was written to perform the calculation by using a
Honeywell 6000 computer. A mesh size of 20 by 20
was employed.

The local Nusselt number can be obtained by con-
sidering the temperature gradient at the wall and the
local heat transfer coefficient.

The result is:

(1

NUMERICAL RESULTS

(a) Velocity and temperature profiles

For fully developed flow with uniform axial tempera-
ture gradient, the thermal and hydraulic fields depend
on parameters Cy, C3, and C, [as demonstrated in
governing equations (4)-(6)]. The controlling par-
ameters for dimensionless temperature profiles are C;
and C,. C; is a scale factor to determine actual tem-
perature profile and is determined by the temperature
difference between hot and cold ends.

The dimensionless velocity profiles do not depend
on any of the parameters stated above. However, as
pointed out by Klepfer et al. [1], the maximum
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velocity at the upper or lower portion of the fuid flow
depends on the temperature drop between the hot and
cold ends.

(b) Wull temperature

As indicated in equation (6), the wall temperature
is obtained by considering circumferential heat con-
duction in the pipe wall, heat transfer through the fluid
inside the pipe, and heat loss outside of the pipe wall.
The dimensionless wall temperature profile around the
wall circumference with C; as a parameter is shown in
Fig. 2 for the case when the outside wall is insulated

20H -1

Dimensioniess walltempergture, ¢ x 10°

-~ 2.0 )
[+ 80 w80
Circumnferential position, &

F1G. 2. C; effects on dimensionless wall temperature profiles.

(C4 = 0). Increasing Cs tends to increase the tempera-
ture gradient around the wall. There is no great change
in wall temperature profile when C; is larger than 10.
Those profiles are seen to be symmetric with respect
to = 90° and are similar to the cosing functions. The
top and bottom wall temperature difference increases
as (5 increases. The reference temperature 7, appears
at the horizontal centerline or at the wall located at
f = n/2.

The heat loss, associated with C4 parameters, effect
on the wall temperature profile is shown in Fig. 3.
Increasing heat loss tends to reduce the top and bottom
temperature difference. It is seen that wall temperature
profiles appear to be similar for different values of
C4. The location of the average fluid temperature 7,
moves toward the top as C, increases.

The local heat-transfer coefficients associated with
Nusselt number can be obtained from equation {(11).
Figure 4 shows the variation of the local Nusselt
number with C; as the parameter, The local Nusselt
number increases as C, decreases and has a maximum
value at 8 = n/2. For a larger C; (greater than 10), the
heat-transfer coefficient is uniform around the tube
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circumference. This is an important result which leads
one to further simplify the problem to the point where
an exact solution can be obtained. A detailed discussion
of this solution will be given in the next section.

EXACT SOLUTION FOR THE TEMPERATURE
VARIATION AROUND THE PIPES
{a) Background
The problems involved in predicting the wall tem-
perature variation around a pipe has been well defined
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and solved numerically in previous sections. However,
the assumptions made in previous sections may not be
applicable to the real problems. The two main restric-
tions stated in the previous numerical solutions are:
flow is laminar and the upper portion of the warm fluid
blow and the bottom portion of the cold flow are
separated at the horizontal centerline. These assump-
tions were guided by the visual observations described
by Klepfer ez al. [1]. In the real situation, the Reynolds
number based on diameter may exceed the laminar
flow limit due to large average velocity and low
viscosity and the flow may become turbulent. In addi-
tion, there is no strong evidence nor measurement of
the location of zero velocity plane inside the pipe. The
actual location of this separation line between warm
and cold fluid may depend on axial location, the
strength of the turbulence generated in the entrance,
and on the temperature drop between the hot and
cold ends. It may not even be a horizontal line. In
order to simplify the problem and determine which
major parameter controls the wall temperature profiles,
the conduction equation (6) will be modified.

{b) Formulation and solution

Since tube wall thickness is often small compared
with tube diameter, temperature variation in the radial
direction across the wall can be ignored in most cases.
Also, the temperature gradient in the axial direction is
usually much smaller than the temperature gradient in
the circumferential direction and thus axial conduction
can also be neglected. Considering the tube wall as a
flat plate, a simplified coordinate system for tube cir-
cumference is illustrated in Fig. 5. As previously in-
dicated, the heat loss exterior to the tube wall does not

Xo g o
i e
g?{’o ma x=va

F1G. 5. Simplified coordinate system for tube circumference.

have a significant effect on wall temperature profile
and can be neglected. It is further assumed that this
flat plate is exposed to a fluid flow with bulk tem-
perature of T; for X < X, and of T, for X 2 X;
where X, represents the boundary of warm and cool
fluid inside the tube. It has been shown earlier, Fig. 4,
that the heat-transfer coefficient around the tube wall
is uniform for large C;. When the assumptions stated
above are applied, the one-dimensional energy equa-
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tions at the wall become:

2
KW'I'%ﬂg‘z h(T—’EM) for X < XQ
. 1)
d’T
Kwt'a*;‘z‘ = W(T—Tp2) for X 2 X,.

Equation (12) is the same as the differential equation
for the fin problem [9], and is similar to equation (6).
Equation {12) can be simplified by introducing the
following dimensionless parameters:

y=(T-T)AT,

X=aqa-6 {13)
ha a

2——._.—__

A% = s

The exact solution of equation (12) can be obtained
by considering the symmetric condition at § = 0 and
@ = &, the continuous condition at X = Xy and the
dimensionless parameter shown in equation (13). The
results are:

1

b o _ <
Y=g % [sinh An—sinh A(m—85) cosh 28] 6 (6‘;; )

y2 = cosh i{rn—~8) for 6> 6,

where T, is the reference temperature. AT, is some
reference temperature difference to be determined and
y1 and y, stand for (T— T;)/AT, in regions 1 and 2,
respectively.

Equation (14) indicates that this dimensionless tem-
perature profile has a maximum value at the top of
the tube and a minimum at the bottom.

To actually predict the dimensional temperature
profile one has to estimate the numerical value for
4 and 6, and then obtain T, and AT, with any two
measured temperatures around the tube wall. Since the
top and bottom temperatures in most cases are con-
sidered to be given, it is thus convenient to normalize
equation (14) with given top and bottom temperatures
as follows:

T-T,

where Ty and T, are wall temperatures at top and
bottom, respectively. The solution for ¢ is:

¢= (15)

y—1
= (16)
¢ yO)-1
where y is given in equation (14) and
y(0) = W hl e [sinh An—sinh A(m —8,)].

It is easily seen that ¢ varies between 0 and unity.

(c) Analytical results

Two major parameters are involved in the present
exact solution of the simplified problem. They are A
which is related to Biot number and 8, which is the
location where the warm and cool fluid separates
inside the tube. Figure 6 shows the effect of parameter
8, on dimensionless wall iemperature distribution for
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FiG. 6. Parameter 6, effects on dimensionless wall tempera-

ture distribution.

fixed A. Increasing 6, (which means increasing the cross-
section area occupied by warm fluid at the top portion
of the tube) tends to increase ¢ and decrease the tem-
perature gradient at the top portion of the tube. It can
also be seen that 6 has no significant effect on the
magnitude of maximum temperature gradient. The
point of inflection as illustrated in Fig. 6 moves
toward the bottom of the tube as 0, increases. For
0o = 90° the temperature profile is symmetric with
respect to 8 = 90°. This result agrees with the previous
numerical solution.

The effect of parameter A on temperature profiles for
fixed @, are illustrated in Fig. 7. It is clear that the
maximum temperature gradient increases as A in-
creased. For a strong circulation, one expects that the
heat-transfer coefficient will be increased and thus 4
will be increased. With a large value of A the tem-
perature gradient around the tube wall will be increased
in order to carry more heat through the tube wall. The
location of the maximum temperature gradient is only
slightly affected by 4.

A comparison of the present analytical results with

Xe]

08|

08|
P

04

02|

o

Circumferential position, &

1.04

o8k A=t 2 SN _

06 -
¢

oa- |

02 —

8,- 144
L
[ 90° 180°

Circumferential position, &

Fi1G. 7. Parameter A effects on dimensionless wall tempera-
ture profiles with 8 = 72° and 144°.
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FiG. 8. Comparison of the present analytical results with
experimental data from a plastic model test.

experimental data from a plastic model test [1] is
shown in Fig. 8. Two sets of 4 and 8, were chosen to
predict the data. It is seen that the numerical value for
A in the plastic model test is in the neighborhood of
1 and 2, and 6, is about 125°. In the applications of
this analysis to the case of a bypass line around a
valve in the recirculation line of a nuclear reactor the
numerical value of A may be as high as 7.

CONCLUSIONS AND REMARKS

1. Thermal analysis of the temperature variation
around a closed-end, horizontal pipe can be achieved
by solving the coupled fluid energy equation and the
pipe wall conduction equation, provided that the fluid
momentum equation can be solved separately from the
energy equation. This two-dimensional flow analysis
seems to be sufficient to describe the problem. Further
simplifying assumptions reduce the problem to one
whose solution is the same as that for the one-
dimensional fin analysis for prediction of the wall
temperature profiles. The solution to this problem has
been shown to depend on five major parameters, i.e.
Cl, C3, C4, /. and 00.

2. These parameters are all dimensionless except C;
which is the scale of temperature profile. The absolute
value of temperature drop between top and bottom
of the tube wall increases as €, increases. A tube with
poor thermal conductivity or large tube diameter and
thickness ratio (with large C3) tends to increase the
temperature gradient around the wall. Heat loss
through the outside of the tube wall, a large value of
Cy, is seen to decrease the temperature drop. The
maximum temperature gradient around the wall is con-
trolled mainly by the parameter 4. Increasing A will
increase the maximum temperature gradient. The
location of the maximum temperature gradient moves
toward the bottom of the tube as {4 increases. The
numerical value of / in the test to which these results
were compared was around 2. In practical application,
Z may be as high as 7.

3. One way to prevent high circumferential tempera-
ture gradients is to eliminate the natural circulation
inside the pipe. This could be accomplished by allowing
a small leakage or by installing a device to promote
turbulence inside the pipe. For an existing system, a
small axial temperature drop, high thermal conduc-
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tivity of the pipe wall, small diameter-to-thickness
ratio and a large heat-transfer coefficient on the outside
of the pipe will all help to reduce the circumferential
temperature gradient inside the pipe. Figure 7 can be
utilized for stress analysis.

4. Although this study seems to clarify some of the
questions related to temperature variation around the
pipe, some problems still remain unsolved. The heat-
transfer coefficient in parameter A needs to be deter-
mined experimentally by using full-scale steel pipes.
The conclusions reached from this preliminary study
need further experimental verification. More extensive
investigations experimentally and theoretically are re-
quired to fully understand the mechanism involved in
this problem. An interesting and useful extension of
this analysis would be to determine the two-dimen-
sional temperature profiles in the pipe wall.
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CONVECTION NATURELLE DANS LES TUBES HORIZONTAUX

Résumeé—La convection naturelle dans un tube horizontal dont une extrémité est réunie au tube chaud
principal et 'autre extrémité fermée peut créer un gradient de température important a la fois dans le
sens axial et le sens circonférenciel. La distribution de température autour d’un tel tube peut étre calculée
en résolvant les équations de conservation a l'intérieur du tube et I'équation d’énergie autour du tube.
Ces équations ont été résolues a l'aide de la méthode des séries SOR (successive sur relaxation). Cette
solution numérique a été testée en comparant ses résultats avec la solution exacte dans le cas simplifié
ou le coefficient de transfert de chaleur autour du tube est constant.

Les variations de température du tube calculées par cette méthode ont été caractérisées par cing
parameétres adimensionnels. Sur ces cing paramétres, le parameétre 4, qui est lié au nombre de Biot est
le paramétre déterminant. Le gradient maximum de température autour du tube augmente fortement
avec A. Des applications de cette méthode sont discutées et on présente un ensemble de recommandations

permettant de réduire le gradient de température.

NATURLICHE KONVEKTION IN HORIZONTALEN ROHREN

Zusammenfassung— Die natiirliche Konvektion in einem horizontalen Rohr, von dem ein Ende mit einer
heifen Hauptrohrleitung verbunden ist, wihrend das andere Ende verschlossen ist, kann erhebliche
Temperaturgradienten sowohl in axialer Richtung wie in Umfangsrichtung hervorrufen. Die Temperatur-
verteilung um ein solches Rohr kann aus der Losung der Erhaltungsgleichungen fiir den Innenrohrbereich
und der Energiegleichung fiir den Bereich um das Rohr herum ermittelt werden. Zur Losung wurde die
SOR-Methode (schrittweise Uberrelaxation) verwendet. Diese numerische Losung wurde durch Vergleich
mit der exakten Losung fiir den vereinfachten Fall eines einheitlichen Wirmeiibergangskoeflizienten an
der AuBenseite des Rohres bestétigt.

Die analytisch ermittelten Verdnderungen der Rohrtemperatur wurden mit Hilfe von 5 dimensionslosen
Kennzahlen erfaBt. Von diesen 5 Kennzahlen dominiert der Parameter A, der mit der Biot—Zahl verkniipft
ist. Der max. Temperaturgradient um das Rohr nimmt mit wachsendem A stark zu. Es werden
Anwendungen dieser Losung diskutiert und Empfehlungen zur Verringerung des Temperaturgradienten

gegeben.

ECTECTBEHHAS UUPKVYJIALUA
B TOPU3OHTAJIBHBIX TPYBAX

Annorauna — EcTecTBeHHas LUMPKYNALHA B TOPU3OHTANBHOW TpyOe, OTKPHITHIM KOHLOM NOACOEIH-
HEHHOH K ropsueMy TpyOONpOBOAY, MOXKET CIYXHTH IIPUYMHOM BO3HMKHOBEHHS 3HAUUTENILHBIX
TeMrepaTypHbIX TPAOMCHTOB MO €€ OCH M OKDYXHOCTH. PacrnpeneneHMe TemnepaTypbl BOKpPYr
Takoi TPyObl MOXHO paccYMTaTh, UCMIOJNB3YS YPABHEHWE COXpaHEHHA N7 BHYTpEeHHeH o6iacTH, a
YpaBHEHHE HEPIMH — IS BHEWHel oGsacty TpyOol. YpaBHEHHs pelIajiuch JIMHEHHBIM METOAOM
MOCNEN0BaTENbHOM BepxHell penakcanwu. CnpaBelyIMBOCTb YMCIIEHHBIX pe3ysibTaToB Onina mnoa-
TBEPXKAEHA CPaBHEHHEM C TOYHBIM pELICHHEM Ins GoJiee MPOCTOro cilyyas HOCTOAHHOTrO Ko3bhdu-
LIMEHTa TEMIOOOMEHA 110 BHELIHEMY MEpUMETPY TPyGbl. PaccuuTaHHOE ¢ NOMOILBIO AAHHOTO METOIa
TeMmepaTypHoe 1oJfie TpyObl xapaKTepu3yercs NsaThio Ge3pa3MepHbIMH mapamerpamu. Onpeaens-
IOLIMM U3 HUX ABJISETCH HapameTp A,CBsi3aHHbli ¢ wncioM buo. C ero ysenuueHueM MaKCHMAIbHBIH
TEMIEPaTYPHbIH TPAAMEHT BO BHeLIHel oGnacTH TpyObl pe3ko Bo3pacTaer. PacCMOTpEHBI Clyyau
MPUMEHEHUS TPENIONKEHHOTO MeToJa M OaHbl PEKOMEHIAUMH IO CHHXKEHHIO TEMIEpaTypHOTo
rpamfeHTa.



