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NATURAL CIRCULATION IN HORIZONTAL PIPES 

S. W. HONG 
NSS Methods Unit, General Electric Company, San Jose, CA 95125, U.S.A. 

(Receioed 20 May 1976 and in revised form 21 September 1976) 

Abstract-Natural circulation in a horizontal pipe with one end connected to the hot main pipe and 
one end closed can create a substantial temperature gradient axially and circumferentially. The tempera- 
ture distribution around such a pipe can be predicted by solving the conservation equations inside the 
pipe and energy equation around the pipe. The line SOR (successive over relaxation) method has been 
employed to solve these equations. This numerical solution has been confirmed by comparing it to an 
exact solution for the simplified case where the heat transfer coefficient around the pipe is uniform. 

Pipe temperature variations predicted by this analysis have been characterized by five dimensionless 
parameters. Of these five, the parameter I., which is related to the Biot number, is the controlling 
parameter. The maximum temperature gradient around the tube increases sharply as E. increases. 
Applications of this solution are discussed and a set of recommendations to reduce temperature gradient 

are presented. 

NOMENCLATURE 

A, matrix; 

4 tube radius [m] ; 
ait bi, civ di, elements of vector; 

Bi, 

c, 

Cl, 

C3r 

c4, 

c!J, 

Q 

f? 
h, 
K,, 
KW, 
M, 
N, 
Nu, 

Biot number, g ; 
w 

axial pressure gradient, 

$ g, [dimensionless] ; 

constant axial temperature drop, 

ReaPrag [K]; 

dimensionless wall parameter, g ; 
w 

dimensionless heat loss parameter, 

a* q$ __ -’ 
K,c C1 ’ 

constant pressure specific heat [J/kg K] ; 
inside tuber diameter [m] ; 
dummy variable; 
heat-transfer coefficient [W/m” K]; 
fluid thermal conductivity [Iwjm K] ; 
tube wall thermal conductivity [W/m K]; 
number of divisions in R-direction; 
number of divisions in O-direction; 
local circumferential Nusselt number, 

(ha)/& ; 
pressure [N/m*] ; 
Peclet number Re, Pr ; 
Prandtl number (pC,/Kf); 
rate of heat transfer per unit area [W/m’]; 
amplitude of rate of heat loss through 
outside of the tube wall [W/m*]; 

R, 0, Z, dimensional cylindrical coordinates; 

r, 8, z, dimensionless cylindrical coordinates; 
- 

Re,, Reynolds number based on radius, @? ; 
P 

T local fluid or wall temperature [K] ; 

AT*, 

6 
W, 
W, 
q 

X, 
Y, 

top wall temperature [K]; 
bottom wall temperature [K]; 
bulk average temperature [K] ; 
reference temperature [K]; 
circumferential temperature drop between 

the top and bottom of the wall TI - T2 [K]; 
axial temperature drop between hot and cold 

ends, or constant axial temperature drop in 
fully developed region [K] ; 
tube wall thickness [m]; 

dimensional axial velocity [m/s] ; 
dimensionless axial velocity, W/w; 
average axial velocity in upper or bottom 

portion of the tube [m/s] ; 
dimensional circumferential direction; 
dimensionless temperature (T- T,)/AT, 
defined in equation (13). 

Greek symbols 

0, angle measured from top of the tube, degree; 
0 0, boundary for regions 1 and 2 shown in 

Fig. 5; 
1, dimensionless parameter, 

u viscosity [Ns/m’]; 

P? density [kg/m3]; 

4% dimensionless temperature, 

T-T. T- T7 

V, two-dimensional Laplacian operator 

E+‘C+“‘. 
&* y dr p2 >e* 

Subscripts 

b, bulk mean value; 

f7 property for fluid; 

i, j, space subscripts of grid points in R and 0 
direction; 

W, proper&y for wall. 
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INTRODC.C’TIOU 

NATURAL circulation in a horizontal pipe occurs when 
one end is closed and the other end is connected with 
another pipe where the hot fluid is passing. The hot 
fluid from the flowing pipe moves into the upper 

portion of the closed pipe toward the closed cold end 
and cooler fluid flows out the lower portion of the 
closed pipe toward the flowing pipe. In a typical 
application, the closed end of the pipe is usually the 

location of a valve. The frequent opening and closing 
of the valve can create a significant thermal stress in 
the valve as well as in the pipe owing to the tempera- 
ture difference between the main pipe and the closed 

end. 
There will also be top-to-bottom temperature differ- 

ences found in these horizontal, dead-leg pipes. This 
temperature gradient is also produced by the natural 
circulation flow. The detailed temperature profiles 
around such a pipe and the temperature differences 
between the main pipe and the cold ends are required 
for pipe design, thermal stress analysis and valve failure 

analysis. 

It was observed in a plastic model test [l] that the 
upper fluid which is warmer tends to move toward 

the dead leg and the colder, bottom portion of the 
fluid moves to the main pipe. A pressure drop between 
the two ends is created by a temperature-induced 
density gradient along the pipe. There is, of course, an 
entrance length which allows the natural circulation 
flow to develop and a region close to the end of the 
dead leg where the temperature variations around the 
tube wall are nearly uniform. The Bow pattern observed 
in these regions is three dimensional and the solution 
is complicated. The successful handling of such a flow 
is difficult by considering the natural convection in the 

vertical direction so that flow becomes three dimen- 
sional. The present analysis will be concerned with the 
region where the greatest temperature gradients are 
observed and the entrance effect will be ignored. 

The velocity component in the vertical direction 
observed is much smaller than the velocity com- 
ponent in the horizontal direction generated by the 
natural circulation. The free convection effect in the 

vertical direction will be ignored and the problem is 
simplified as forced convection in a horizontal pipe. 

Since the top portion and the bottom portion of the 
fluid flow in opposite directions, one can imagine that 
there is a solid wall across the horizontal centerline, 

and the flow in the pipe functions as a heat exchanger. 
It is noted from both visual observation and velocity 
measurements that the fluid flows in these two portions 

are laminar. One can thus simulate the flow pattern as 
laminar flow in a semi-circular tube. 

Thermally and hydrodynamically fully developed 
flow in semi-circular tubes has been solved by Eckert 

et al. [2] and Sparrow and Haji-Sheikh [3]. Extensive 
investigation of laminar flow heat transfer in ducts of 

various shapes has been considered by Shah and 
London [4] for different kinds of thermal boundary 
conditions. Recently, Hong and Bergles [S] considered 
the entrance effect of semi-circular tubes with uniform 
heat flux. The three-dimensional thermal entrance 
region problem in the circular tubes with secondary 
flow effect has been solved numerically by Hong et al. 
[6,7], for uniform wall heat flux. However, none of 
these existing solutions can be applied directly to the 
present problem. For the particular problem at hand, 

the results of two-dimensional analysis lead one to a 

further simplification of the problem. The final solution 
is obtained by solving an equation identical to that 
obtained for the one-dimensional conduction fin 

problem. 

FORMULATION OF THE PROBLEM 

The system of coordinates of steady laminar flow in 
the fully developed region of a horizontal tube is shown 
in Fig. 1. To facilitate analysis, the following assump- 

tions are made: 
Physical properties of the fluid and tube wall are 
considered to be constant so that neither free con- 
vection in the vertical direction nor temperature- 

dependent viscosity effects are taken into account. 
The axial pressure gradient is constant. 
The axial temperature gradients in the top and 

bottom portions of fluid flow are the same in 
magnitude and are constant. 

Ntl 

FIN. 1. Coordinate system and numerical grid for horizontal circular pipe. 
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where 4. The axial and radial conduction in the tube wall 
can be neglected. 

5. The axial conduction in the fluid can be neglected. 
6. The fluid flow in the upper and lower portions of 

the pipe is identical except in direction and is two 
dimensional. The free convection in the vertical 
direction is ignored. 

When cylindrical coordinates (R, 0, 2) as shown in 
Fig, 1 are introduced and the assumptions stated above 
are applied, the governing differential equations are: 

momentum equation 

t:2w 1 iiw I ?2W 18P 
m+Ri’R+zx=-- fi (7.Z 

(1) 

Energy equation 

c-=* (7) 

KdC, 

are constants and 

Conduction equation at wall 

is the Lapla~an operator. q(0) is assumed to be a given 
function for heat loss through the outside of the tube 
wall and can be estimated to be 

q(Q) = 1 ++cos0. (8) 
The boundary conditions for equations (4)-(6) are as 

(2) follows : 

atwall,r=l,w=O 

F $ = I<, g +q”(Q). (3) 
w 

Since the thermal and hydrodynamic conditions are 
symmet~c with respect to the vertical center line, one 
needs to consider only half of the circular geometry. 
To normalize the governing partial differential equa- 
tions the following dimensionless variables, constants, 
and parameters were used: 

Dimensionless radius r = RJa 

Dimensionless velocity w = W/i;y 

Reynolds number based on radius Re =!!!!? a 
k 

Prandtl number Pr = 2 

Peclet number Pe = Re,Pr 

Dimensionless pressure drop constant 

a2 dP 
c=-_- 

pwaz 

Dimensionless temperature 

T-T, T-T, $= =_ 

Pe& AT* 
Cl 

where To and I; are the wall and atmospheric tem- 
perature, respectively. It is clear that Cq = 0 corre- 
sponds to a perfect insulated wall. A computer code 
was written to perform the calculation by using a 
Honeywell 6000 computer. A mesh size of 20 by 20 
was employed. 

The local Nusselt number can be obtained by con- 
sidering the temperature gradient at the wall and the 
local heat transfer coefficient. 

The result is : 

(11) 
Axial temperature gradient parameter 

Cl = Peag NUMERICAL REWLTS 

(a) Velocity a& temperature pro&es 
where F is the reference temperature and is chosen to 
be the overall average ffuid bulk temperature at one 

For fully developed flow with uniform axial tempera- 

cross section. The momentum and energy equation for 
ture gradient, the thermal and hydraulic fields depend 

the fluid and conduction equation for the pipe wall 
on parameters Ci, Cs, and C4 [as demonstrated in 

can thus be simplified to the following dimensionless 
governing equations (4)-(6)]. The controlling par- 
ameters for dimensionless temperature profiles are Cs 

forms. 
VW = c (4) 

and C+ C1 is a scale factor to determine actual tem- 
perature profile and is determined by the temperature 

v24= -w (5) difference between hot and cold ends. 

at vertical centerline, 0 = 0 or 7t 

at horizontal centerline, B = rrf2, W = 0. 

It is noted that equations (4) and (5) are Poisson’s 
equation and can be solved by the Successive Over- 
Relaxation (SOR) method. The details of the SOR 
method are given in [7] and [S]. 

The heat loss term indicated in equation (7) is 
assumed and can be estimated as: 

4; = h( To - 7J = 0.25 (IO) 

The dimensionless velocity profiles do not depend 
on any of the parameters stated above. However, as 
pointed out by Klepfer et al. [I], the m~imum 
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velocity at the upper or lower portion of the fluid flow 
depends on the temperature drop between the hot and 
cold ends. 

(b) Wdl temperature 

As indicated in equation (6), the wall temperature 
is obtained by considering circumferential heat con- 
duction in the pipe wall, heat transfer through the fluid 
inside the pipe, and heat loss outside of the pipe wall. 
The dimensionless wall temperature profile around the 
wall ~rcumference with C3 as a parameter is shown in 
Fig. 2 for the case when the outside wall is insulated 

30 
1 

I c‘+=oo 

-I 

FIG. 2. C3 effects on dimensionless wall temperature profiles. 

(C, = 0). Increasing C3 tends to increase the tempera- 
ture gradient around the wall. There is no great change 
in wall temperature profile when C3 is larger than 10. 
Those profiles are seen to be symmetric with respect 
to 0 = 90” and are similar to the cosine functions. The 
top and bottom wall temperature difference increases 
as C3 increases. The reference temperature T, appears 
at the horizontal centerline or at the wall located at 
t, = n/2. 

The heat loss, associated with C* parameters, effect 
on the wait tem~rature profile is shown in Fig. 3. 
increasing heat loss tends to reduce the top and bottom 
temperature difference. It is seen that wall temperature 
profiles appear to be similar for different values of 
C,. The location of the average fluid temperature T, 
moves toward the top as Cq increases. 

The local heat-transfer coefficients associated with 
Nusselt number can be obtained from equation (11). 
Figure 4 shows the variation of the local Nusselt 
number with Cj as the parameter. The local Nusselt 
number increases as C3 decreases and has a maximum 
value at @ = q’2. For a larger C3 (greater than lo), the 
heat-transfer c~~c~ent is uniform around the tube 
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FIG. 3. Heat Loss effects on dimensionless wall tern~era~ure 
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FIG. 4. C’3 effects on local Nusselt number. 

circumference. This is an important result which leads 
one to further simplify the problem to the point where 
an exact solution can be obtained. A detailed discussion 
of this solution will be given in the next section. 

EXACT SOLUTION FOR THE TEMPERATURE 
VARIATION AROUND THE PIPES 

(a) Background 
The problems involved in predicting the wall tem- 

perature v~iation around a pipe has been well defined 
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and solved numerically in previous sections. However, 
the assumptions made in previous sections may not be 
applicable to the real problems. The two main restrio 
tions stated in the previous numerical solutions are: 
flow is larninar and the upper portion of the warm fluid 
blow and the bottom portion of the cold flow are 
separated at the horizontal centerline. These assump 
tions were guided by the visual observations described 
by Klepfer et al. [il. In the real situation, the Reynolds 
number based on diameter may exceed the laminar 
flow limit due to large average velocity and low 
viscosity and the ff ow may become turbulent. In addi- 
tion, there is no strong evidence nor measurement of 
the location of zero velocity plane inside the pipe. The 
actual location of this separation line between warm 
and cold fluid may depend on axial location, the 
strength of the turbulence generated in the entrance, 
and on the temperature drop between the hot and 
cold ends. It may not even be a horizontal line. In 
order to simplify the problem and determine which 
major parameter controls the wall temperature profiles, 
the conduction equation (6) will be modified. 

(b) ~orrn~~ati5n and s5~~tion 

Since tube wall thickness is often small compared 
with tube diameter, temperature variation in the radial 
direction across the wall can be ignored in most cases. 
Also, the temperature gradient in the axial direction is 
usually much smaller than the temperature gradient in 
the circumferential direction and thus axial conduction 
can also be neglected. Considering the tube wall as a 
flat plate, a simplified coordinate system for tube cir- 
cumference is illustrated in Fig. 5. As previously in- 
dicated, the heat loss exterior to the tube wall does not 

J I 

=o 
X=SQ 

FIG. 5. Simplified coordinate system for tube circumference. 

have a significant effect on wall temperature profile 
and can be neglected. It is further assumed that this 
flat plate is exposed to a fluid flow with bulk tem- 
perature of L$ for X < X0 and of & for X >, X0; 
where X0 represents the boundary of wm and cool 
Auid inside the tube. It has been shown earlier, Fig. 4, 
that the heat-transfer coefficient around the tube wall 
is uniform for large Cs. When the assumptions stated 
above are applied, the one-~m~sional energy equa- 

tions at the wall become: 

&&$Z h(T-Tbl) for X G X0 

dZT 
(12) 

Kwt dX2 - = h(T- &2) for X B X0. 

Equation (12) is the same as the differential equation 
for the fm problem ES], and is similar to equation (6). 
Equation (12) can be simplifi~ by introducing the 
follo~ng dimensionless parameters: 

y = (T-Q/AK 

X=a,% (13) 

;12 +L;. 
W 

The exact solution of equation (12) can be obtained 
by considering the symmetric condition at % = 0 and 
8 = n, the continuous condition at X = X0 and the 
dimensionless parameter shown in equation (13). The 
results are: 

YI = ~[sinha~-sinh~(~-%~)~sh~%] % f %0 

yz = cash n(n - %) for % 2 B0 
(14) 

where T, is the reference temperature. AT, is some 
reference temperature difference to be determined and 
yl and y2 stand for (T-x)/AT, in regions 1 and 2, 
respectively. 

Equation (14) indicates that this dimensionless tem- 
perature profile has a maximum value at the top of 
the tube and a minimum at the bottom. 

To actually predict the dimensional temperature 
profile one has to estimate the numerical value for 
I and 80 and then obtain T, and AT, with any two 
measured tem~ratures around the tube wall. Since the 
top and bottom temperatures in most cases are con- 
sidered to be given, it is thus convenient to normalize 
equation (14) with given top and bottom temperatures 
as follows: 

T-T, 
cp=.-..--- 

Ti - 7-i 
(15) 

where T1 and T, are wall temperatures at top and 
bottom, respectively. The solution for #J is : 

d,= Y-l 
Y(OI - 1 

where y is given in equation (14) and 

061 

Y(O) = ~ 1 [sinhLn-sinh;l(z-%O)]. 
sinh MO 

It is easily seen that (b varies between 0 and unity. 

(c) Analytical results 

Two major parameters are involved in the present 
exact solution of the simplified problem. They are A 
which is related to Biot number and 00 which is the 
location where the warm and cool fluid separates 
inside the tube. Figure 6 shows the effect of parameter 
%* on dimensionless wall tem~rat~e dis~bution for 
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FIG. 6. Parameter Ho effects on dimensionless wall tempera- 
ture distribution. 

fixed 1. Increasing B. (which means increasing the cross- 
section area occupied by warm fluid at the top portion 
of the tube) tends to increase 4 and decrease the tem- 

perature gradient at the top portion of the tube. It can 
also be seen that Be has no significant effect on the 

magnitude of maximum temperature gradient. The 
point of inflection as illustrated in Fig. 6 moves 
toward the bottom of the tube as O0 increases. For 
13~ = 90” the temperature profile is symmetric with 
respect to 0 = 90”. This result agrees with the previous 

numerical solution. 
The effect of parameter 1 on temperature profiles for 

fixed f& are illustrated in Fig. 7. It is clear that the 
maximum temperature gradient increases as iL in- 

creased. For a strong circulation, one expects that the 
heat-transfer coefficient will be increased and thus i 
will be increased. With a large value of 2 the tem- 
perature gradient around the tube wall will be increased 
in order to carry more heat through the tube wall. The 
location of the maximum temperature gradient is only 
slightly affected by i.. 

A comparison of the present analytical results with 
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FIG. 7. Parameter ir effects on dimensionless wall tempera- 
ture profiles with B = 72” and 144”. 
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FIG. 8. Comparison of the present analytical results with 
experimental data from a plastic model test. 

experimental data from a plastic model test [l] is 
shown in Fig. 8. Two sets of 1 and B0 were chosen to 
predict the data. It is seen that the numerical value for 
i in the plastic model test is in the neighborhood of 
1 and 2, and t’?,, is about 125”. In the applications of 

this analysis to the case of a bypass line around a 
valve in the recirculation line of a nuclear reactor the 
numerical value of i may be as high as 7. 

CONCLUSIONS AND REMARKS 

1. Thermal analysis of the temperature variation 
around a closed-end, horizontal pipe can be achieved 
by solving the coupled fluid energy equation and the 

pipe wall conduction equation, provided that the fluid 
momentum equation can be solved separately from the 
energy equation. This two-dimensional how analysis 
seems to be sufficient to describe the problem. Further 
simplifying assumptions reduce the problem to one 
whose solution is the same as that for the one- 
dimensional fin analysis for prediction of the wall 
temperature profiles. The solution to this problem has 
been shown to depend on five major parameters, i.e. 
C1, C3, C4, i. and &. 

2. These parameters are all dimensionless except Ci 
which is the scale of temperature profile. The absolute 

value of temperature drop between top and bottom 
of the tube wall increases as Ci increases. A tube with 

poor thermal conductivity or large tube diameter and 
thickness ratio (with large C,) tends to increase the 
temperature gradient around the wall. Heat loss 
through the outside of the tube wall, a large value of 
C4, is seen to decrease the temperature drop. The 
maximum temperature gradient around the wall is con- 
trolled mainly by the parameter 1.. Increasing L will 
increase the maximum temperature gradient. The 
location of the maximum temperature gradient moves 
toward the bottom of the tube as O0 increases. The 
numerical value of i. in the test to which these results 
were compared was around 2. In practical application, 
3, may be as high as 7. 

3. One way to prevent high circumferential tempera- 
ture gradients is to eliminate the natural circulation 
inside the pipe. This could be accomplished by allowing 
a small leakage or by installing a device to promote 

turbulence inside the pipe. For an existing system, a 
small axial temperature drop, high thermal conduc- 
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tivity of the pipe wall, small diameter-to-thickness 2. E. R. G. Eckert, T. F. Irvine and J. T. Yen, Local laminar . _ 
ratio and a large heat-transfer coefficient on the outside heat transfer in wedge-shaped passages, Trans. Am. SOC. 

of the pipe will all help to reduce the circumferential Me& Engrs 80, 1433-1438 (1958). 

temperature gradient inside the pipe. Figure 7 can be 
3. E. M. Sparrow and A. Haji-Sheikh, Flow and heat transfer 

utilized for stress analysis. 
in ducts of arbitrary shape with arbitrary thermal 
boundary conditions, J. Heat Transfer 88,351-358 (1966). 

4. Although this study seems to clarify some of the 4. R. K. Shah and A. L. London, Thermal boundary con- 

questions related to temperature variation around the ditions for laminar duct flow forced convection heat 

pipe, some problems still remain unsolved. The heat- 
transfer, J. Heat Transfer 36, 1599165 (1974). 

transfer coefficient in parameter i needs to be deter- 
5. S. W. Hong and A. E. Bergles, Laminar flow heat transfer 

in the entrance region of semi-circular tubes with uniform 
mined experimentally by using full-scale steel pipes. heat flux, Inr. J. Heat Mass Transfer 19, 123-124 (1976). 

The conclusions reached from this preliminary study 6. S. W. Hong, S. Morcos and A. E. Bergles, Analytical 

need further experimental verification. More extensive and experimental results for combined forced and free 

investigations experimentally and theoretically are re- 
laminar convection in horizontal tubes, in Heat Transfer 

quired to fully understand the mechanism involved in 
lY74, Vol. III, pp. 154158. Japan Society Mechanical 
Engineering, Tokyo (1974). 

this problem. An interesting and useful extension of 7. S. W. Hong, Laminar flow heat transfer in ordinary and 

this analysis would be to determine the two-dimen- augmented tubes, Ph.D. Thesis, Mechanical Engineering 

sional temperature profiles in the pipe wall. 
Department, Iowa State University (1974). 

8. W. F. Ames, Numerical Methods for Partial Differential 
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CONVECTION NATURELLE DANS LES TUBES HORIZONTAUX 

R&urn&La convection naturelle dans un tube horizontal dont une extremite est riunie au tube chaud 
principal et I’autre extrtmite fermee peut creer un gradient de temperature important a la fois dans le 
sens axial et le sens circonferenciel. La distribution de temperature autour d’un tel tube peut &tre calculee 
en rtsolvant les equations de conservation a l’inttrieur du tube et l’equation d’energie autour du tube. 
Ces equations ont ete rtsolues a I’aide de la mtthode des series SOR (successive sur relaxation). Cette 
solution numtrique a tte test&e en comparant ses r&hats avec la solution exacte dans le cas simplifit 
ou le coefficient de transfert de chaleur autour du tube est constant. 

Les variations de temperature du tube calculees par cette mtthode ont eti caracterisees par cinq 
paramttres adimensionnels. Sur ces cinq parambtres, le paramttre %, qui est lie au nombre de Biot est 
le paramttre determinant. Le gradient maximum de temperature autour du tube augmente fortement 
avec ,l. Des applications de cette methode sont discutees et on prisente un ensemble de recommandations 

permettant de reduire le gradient de temperature. 

NATURLICHE KONVEKTION IN HORIZONTALEN ROHREN 

Zusammenfassung-Die nattirliche Konvektion in einem horizontalen Rohr, von dem ein Ende mit einer 
heiBen Hauptrohrleitung verbunden ist, wlhrend das andere Ende verschlossen ist, kann erhebliche 
Temperaturgradienten sowohl in axialer Richtung wie in Umfangsrichtung hervorrufen. Die Temperatur- 
verteilung urn ein solches Rohr kann aus der Losung der Erhaltungsgleichungen fur den Innenrohrbereich 
und der Energiegleichung fiir den Bereich urn das Rohr herum ermitteh werden. Zur Losung wurde die 
SOR-Methode (schrittweise Uberrelaxation) verwendet. Diese numerische Losung wurde durch Vergleich 
mit der exakten Losung fur den vereinfachten Fall eines einheitlichen Warmetibergangskoeffizienten an 
der AuBenseite des Rohres bestatigt. 

Die analytisch ermittelten Veranderungen der Rohrtemperatur wurden mit Hilfe von 5 dimensionslosen 
Kennzahlen erfal3t. Von diesen 5 Kennzahlen dominiert der Parameter I, der mit der Biot-Zahl verkniipft 
ist. Der max. Temperaturgradient urn das Rohr nimmt mit wachsendem 1 stark zu. Es werden 
Anwendungen dieser L&sung diskutiert und Empfehlungen zur Verringerung des Temperaturgradienten 

gegeben. 

ECTECTBEHHAR HHPKYjT~UMtl 
B FOPH3OHTA_JIbHblX TPYGAX 

&iliOTaUll~ - ECTeCTBeHHaK UIIpKyJISIUWI B rOpIi30HTaJIbHOir Tpy6e, OTKPblTblM KOHUOM nOACOeAH- 
HeHHOk K rOoRYeMy Tpy6OnpOBOAy, MOXCeT CAyWiT IIpIVIUHOk B03HUKHOBeHWI 3HaYUTeAbHbIX 
TeMnepaTypHbIX rpaAAeHTOB n0 ee OCA II OKpymHOCTn. PaCIIpePeneHUe TeMneoaTypbI BOK,,Yr 
TaKOir Tpy6bI MOXCHO PaCCWITaTb, UCnOJIb3yrI ypaBHeHAe COXpaHeHHSI AJIa BHyTpeHHeh o6nacTw, a 
ypaBHeHEIe 3HeprAII - AJIR BHeLIIHeii o6nacTa Tpy6bI. YpaBHeHIlR peUIaJIUCb JInHefiHbIM MeTOAOM 
IIOCneAOBaTeAbHOfi BeoXHeh peJIaKCaUEIII. CnpaBeAnIIBOCTb WiCneHHbIX pe3ynbTaTOB 6btna IIOA- 
TBepXCAeHa CpaBHeHIieM C TO’IHblM PeLIIeHUeM AJIa 6onee IIoOCTOrO CJIy’Ias nOCTOSIHHOrO K03$&- 
UIieHTa TenJIOO6MeHa n0 BHeIUHeMy IIepUMeTpy Tpy6bI. PaCCWTaHHOe C nOMOIUbIO AaHHOrO MeTOAa 
TeMnepaTypHoe none Tpy6bI xapaKTepa3yeTca nRTbH3 6e3pa3MepHblMn napaMeTpaMw. DIIpeAerUI- 
H)LUIIM II3 HUX na.rmeTc5I napaMeTp x, CBR3aHHbm c ‘IUCSIOM 6HO. c ero yBenarenUeM MaKCHMaJIbHblfi 
TeMIIepaTypHbIh rpaAIieHT BO BHemHeh o6nacTu Tpy6bI pe3KO BO3paCTaeT. PaCCMOTpeHbI CJIyYaH 
npUMeHeHUff IIneASIO~eHHOrO MeTOAa II ABHbI PeKOMeHAaLUiLi II0 CHAXCeHUIO TeMnepaTypHOrO 

rpaAueHTa. 


